Custom LLM Pricing
Use this to register custom pricing for models.
There's 2 ways to track cost:
- cost per token
- cost per second
By default, the response cost is accessible in the logging object via kwargs["response_cost"] on success (sync + async). Learn More
info
LiteLLM already has pricing for any model in our model cost map.
Cost Per Second (e.g. Sagemaker)
Usage with LiteLLM Proxy Server
Step 1: Add pricing to config.yaml
model_list:
  - model_name: sagemaker-completion-model
    litellm_params:
      model: sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4
      input_cost_per_second: 0.000420
  - model_name: sagemaker-embedding-model
    litellm_params:
      model: sagemaker/berri-benchmarking-gpt-j-6b-fp16
      input_cost_per_second: 0.000420 
Step 2: Start proxy
litellm /path/to/config.yaml
Step 3: View Spend Logs
Cost Per Token (e.g. Azure)
Usage with LiteLLM Proxy Server
model_list:
  - model_name: azure-model
    litellm_params:
      model: azure/<your_deployment_name>
      api_key: os.environ/AZURE_API_KEY
      api_base: os.environ/AZURE_API_BASE
      api_version: os.envrion/AZURE_API_VERSION
      input_cost_per_token: 0.000421 # 👈 ONLY to track cost per token
      output_cost_per_token: 0.000520 # 👈 ONLY to track cost per token
Debugging
If you're custom pricing is not being used or you're seeing errors, please check the following:
- Run the proxy with LITELLM_LOG="DEBUG"or the--detailed_debugcli flag
litellm --config /path/to/config.yaml --detailed_debug
- Check logs for this line:
LiteLLM:DEBUG: utils.py:263 - litellm.acompletion
- Check if 'input_cost_per_token' and 'output_cost_per_token' are top-level keys in the acompletion function.
acompletion(
  ...,
  input_cost_per_token: my-custom-price, 
  output_cost_per_token: my-custom-price,
)
If these keys are not present, LiteLLM will not use your custom pricing.
If the problem persists, please file an issue on GitHub.